A fast image reconstruction algorithm based on penalized-likelihood estimate.

نویسندگان

  • Jinhua Sheng
  • Lei Ying
چکیده

Statistical iterative methods for image reconstruction like maximum likelihood expectation maximization (ML-EM) are more robust and flexible than analytical inversion methods and allow for accurately modeling the counting statistics and the photon transport during acquisition. They are rapidly becoming the standard for image reconstruction in emission computed tomography. The maximum likelihood approach provides images with superior noise characteristics compared to the conventional filtered back projection algorithm. But a major drawback of the statistical iterative image reconstruction is its high computational cost. In this paper, a fast algorithm is proposed as a modified OS-EM (MOS-EM) using a penalized function, which is applied to the least squares merit function to accelerate image reconstruction and to achieve better convergence. The experimental results show that the algorithm can provide high quality reconstructed images with a small number of iterations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Paraboloidal Surrogates Algorithm for Convergent Penalized-Likelihood Emission Image Reconstruction

We present a new algorithm for penalized-likelihood emission image reconstruction. The algorithm monotonically increases the objective function, converges globally to the unique maximizer, and easily accommodates the nonnegativity constraint and nonquadratic but convex penalty functions. The algorithm is based on finding paraboloidal surrogate functions for the log-likelihood at each iteration:...

متن کامل

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

Algorithms for Non-Negatively Constrained Maximum Penalized Likelihood Reconstruction in Tomographic Imaging

Image reconstruction is a key component in many medical imaging modalities. The problem of image reconstruction can be viewed as a special inverse problem where the unknown image pixel intensities are estimated from the observed measurements. Since the measurements are usually noise contaminated, statistical reconstruction methods are preferred. In this paper we review some non-negatively const...

متن کامل

Sparsity regularization for image reconstruction with Poisson data

This work investigates three penalized-likelihood expectation maximization (EM) algorithms for image reconstruction with Poisson data where the images are known a priori to be sparse in the space domain. The penalty functions considered are the 1 norm, the 0 “norm,” and a penalty function based on the sum of logarithms of pixel values, R(x) = ∑np j=1 log (xj δ + 1 ) . Our results show that the ...

متن کامل

Metal Artefact Reduction by Least-Squares Penalized-Likelihood Reconstruction with a Fast Polychromatic Projection Model

We consider penalized-likelihood reconstruction for X-ray computed tomography of objects that contain small metal structures. To reduce the beam hardening artefacts induced by these structures, we derive the reconstruction algorithm from a projection model that takes into account the photon emission spectrum and nonlinear variation of attenuation to photon energy. This algorithm requires excess...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical engineering & physics

دوره 27 8  شماره 

صفحات  -

تاریخ انتشار 2005